A look at Driveline Baseball's Velocity Development Program

February 21, 2011 • Training

Traditional baseball conditioning does not make sense, particularly when it comes to pitchers. Pitchers are expected to run long distances and ice their arms after they throw. Many coaches insist that body-weight lunges, push-ups, crunches and plyometrics are the only strength exercises a pitcher will ever need.

The truth of the matter is that this traditional concept of conditioning for baseball is completely backwards. Baseball is a sport composed of brief, explosive physical exertions followed by periods of complete energy recovery. (Triples and inside-the-park homeruns are potential exceptions for complete energy recovery.) Extended cardiovascular training in the form of running poles, getting on a treadmill, or riding a resistance bike, is, for the most part, a complete waste of time if the goal is to get better at baseball.

Baseball is an explosive sport where massive force is created in a very short amount of time. It only makes sense that baseball players should train to be explosive. There's nothing explosive about an extended light jog or crunches. Plyometrics and other body-weight exercises, while including some explosive elements, are limited by the athlete's body weight. There is no room for progression once the athlete adapts to his own body weight.

Throwing a baseball with maximum effort involves just about every major skeletal muscle in the body. This makes it one of the best indicators of a baseball player's explosive strength.

I don't think there's a single coach on the planet that would disagree with what I've said so far, not even Dick Mills who thinks strength training is not only unhelpful but also dangerous.

The thing about explosive strength -- and this may shock some of you -- is that you can improve it by lifting heavy things, like in a weight room.

This is the driving principle behind Driveline Baseball's (Seattle, WA) Velocity Development Program, a comprehensive baseball training program where the main focus is throwing velocity.

Kyle Boddy designed the program and coaches the athletes that are a part of it. The program is split between baseball skill activities, such as defense and mechanics, and strength training.

Regarding the naysayers, Boddy offered, "What they don't get is that training for strength and power also helps young athletes to train general motor patterns, which has a clear translation to all sports. Learning to use hip drive in the back squat, thoracic extension in the front squat, and explosive jumping in the power clean all translate to any sport - you name it, it transfers."

Because throwing a baseball involves so many muscles, the Velocity Development Program is not a program that focuses solely on the arm. As Boddy mentioned, his program utilizes various squat techniques and power cleans, but he also includes deadlifts -- perhaps the best measure of someone's overall brute strength -- and soft-tissue work. He adds, "When they first arrive, they do their self-myofascial release, wrist weight warmups, and resistance band work. The warm-up is pretty fast - it takes about 8 minutes."

The key to the program isn't just getting the athletes to lift the weights, it's to get them to work hard. Not every athlete who walks through the door is ready for the program. They can't all handle it. Boddy says, "We're pretty selective about who we bring in - we're seeking to create a hard-working and competitive atmosphere first and foremost. So we've had to screen out a few guys."

Selecting the right athletes is only part of the equation, though. Working with a coach one-on-one isn't always the best way to stay motivated. This is where the semi-private training model comes in.

Semi-private training, as a basic concept, is like group exercise. A small group of athletes, usually 2-4, train together as a group with a [semi-]personal trainer or coach.

Boddy credits Eric Cressey and Pete Dupuis as having influenced this aspect of his program. He adds, "Semi-private training works better for the athlete and for our business model - we get to train a larger group of guys and fill our facility up, and they get cheaper rates and a better atmosphere to train in. We tend to group them by age first, then skill second, so they have peers they can relate to."

Athletes are competitive by nature, and by throwing a handful of them together as a strength training group this competitive nature helps them push each other to work harder.

Results from Kyle's first Velocity Development Program are already being seen. In one off-season of training, a 15-year-old in his program added 8 MPH to his throws.

Now, if fixing the way baseball athletes are trained were as simple as saying, "Train for explosive strength," I would have said that at the top, and this article would have been very, very short. The truth is that you need a coach that knows how to train for explosive strength.

It's not about getting big (a.k.a. "hyooge") or moving large amounts of weight. It's about becoming explosive and training the correct motor patterns. Exercise selection, volume, intensity, and recovery are all factors that must be taken into consideration no matter how experienced the lifter is.

Kyle's results can do a lot of the talking for me, but I know from experience that Kyle has the knowledge and skillset required to manage these factors. If you live in the Seattle area, I strongly recommend taking a good, hard look at Kyle's program.

You can read more about Driveline Baseball's Velocity Development program here:


What athletes don't know: how to squat

February 7, 2011 • Training

A funny thing happens when you walk into a weight room with an NCAA Division III athlete. It's kind of like witnessing a "Best of Bro-science" compilation, and by "best of" I really mean stuff so awful that you pray for short-term amnesia.

It isn't that what's happening is so aesthetically upsetting that you'd rather watch someone mop up a paint spill with facial tissue. Yes, a lot of it is hard to watch, but what really makes it uncomfortable is that many of them are 100% certain that they know what they're doing.

One of the freshmen said, "I think, by now, everyone pretty much knows how to lift." The irony gave me concussion-like symptoms.

The infamous ball squat.
At least I didn't have to slap anyone for doing this.

During my year coaching NCAA baseball players, I saw countless problems. Among them were some ugly rows, a shocking lack of pull-ups, the improper use of unstable surfaces, and a neglect of soft tissue work. The biggest problem, of course, was -- with the exception of a few athletes -- extremely poor barbell work.

For the most part, if anyone was doing barbell work, he wasn't doing anything but back squats, and calling them "half squats" would have been more accurate. Depth is easily the most prevalent problem with squats.

Poor depth results in quad dominance because of poor activation of the abductors, adductors, hamstrings, and glutes. Because no one wants to back off to a load that their weak posterior chains can handle, poor depth is the toughest problem to correct.

On top of that, poor depth is typically accompanied by excessive ankle dorsiflexion. Instead of bending at the hips, the athlete's knees track forward to allow for more knee flexion. This action moves the barbell closer to the ground, but does not improve the depth of a squat. In this position -- above parallel with ankle dorsiflexion -- the anterior part of the knee faces unnecessary sheer force which may cause pain and may eventually lead to injury.

Next to depth, the most common issue with squats is knee position. Apparently, someone is out there teaching young athletes to squat with a wide stance and feet facing forward. (I have a vague recollection of being taught that myself while in high school.) As the legs bend into the squat and approach 90° of knee flexion, this stance creates unnecessary valgus stress on the medial collateral ligament, which is really good if you're also into grinding your lateral menisci. Such a position suffers many of the same muscle activation problems as poor depth and causes a great deal more pain. (This is true for any flat-footed, standing position where the knees wind up medial to the feet.)

On top of these issues there are chunks of bro-science to deal with: counting that quarter-depth squat as a completed rep so you can tell people "I squatted 400 lbs", coaching cues like "look at the ceiling", and thinking that the Smith Machine is just as good as a barbell.

It takes about 10 minutes to teach someone the correct way to squat, but it takes quite a bit of practice to get it right. Anyone willing to do the work in the first place should be willing to do the work correctly. I'm not going to re-invent the wheel here by breaking the squat down piece by piece and telling you how to do it, but I'm also not going to leave you hanging.

Starting Strength, 2nd Edition, cover.

Mark Rippetoe and Lon Kilgore collaborated on one of the most popular strength training books of all time. It's called Starting Strength. You may have heard of it.

This book is the strength training bible for anyone that hasn't mastered the basic barbell lifts (squat, deadlift, press, clean). It tells you everything you need to know to do these exercises the right way.

If you're serious about strength training, you owe it to yourself to make sure you know what you're doing, and if you're a competitive athlete, there's no reason you shouldn't be serious about strength training.


Understanding extension

August 10, 2010 • Training

If you've ever spent any time around a pitching coach, you've probably heard the phrase "good extension" or "great extension." This is a reference to how a pitcher uses his arm. Unfortunately, there are a lot of people -- pitching coaches included -- who simply do not know good or great extension when they see it because they don't really know what it means.

The other day I saw a very good pitching coach complement his pitcher's extension on a particular pitch. The player kind of mimed extension by reaching toward home plate. The pitching coach stopped him and asked, "What does 'extension' mean?"

I'm sure that some of you are confused. You probably think of extension the same way this pitcher did -- drive off the rubber, extend toward the target. Unfortunately, that's not the type of extension that should be extolled.

In any athletic action, several extensions take place in several different places throughout the body. In the act of pitching, the term "extension" should refer to the position of the arm when the baseball leaves the pitcher's hand.

In pitching, "extension" is a generalized term that refers to elbow extension, but good extension isn't just about releasing the baseball with an extended elbow. Finding good extension is about releasing the baseball in a mechanically efficient position.

The most efficient release will occur when the hand reaches its maximum velocity in the direction of home plate.

The physics of rotational acceleration tells us that this happens when the forearm (the acting lever for the hand and ball) is perpendicular to the target because at this point, the hand is moving directly toward the target. 100% of the hand's -- and therefore the ball's -- velocity is directed toward home plate.

When this physics concept is applied to elbow extension in the throwing motion, "good extension" is seen in a full extension release point that is perpendicular to home plate rather than one that is reaching forward toward the plate.

Because the hand is connected to the elbow, the faster the elbow moves, the faster the hand will move. The elbow is connected to the shoulder, so the faster the shoulder moves, the faster the elbow will move.

Put together, these ideas build a concept of the release point in which the pitching shoulder, elbow, hand, and the baseball itself are moving straight toward home plate with near-peak velocity. The problem with that concept is that the human body is not made up of perfect levers like the ones that introductory physics classes love to pretend exist.

The result is that good extension can take many forms -- varying widely from pitcher to pitcher -- but true extension looks the same from pitcher to pitcher no matter how different their deliveries are. In most pitchers, good extension will occur slightly in front of perpendicular.

From L to R: Stephen Strasburg, Martin Perez, Adam Spinn.

Now that you have an idea what good extension looks like, how important is it? That's a question that's not easy to answer.

As with most pitching concepts, there are always exceptions to "rules" like this. UCLA's Trevor Bauer is very good at what he does, has been clocked in the mid- to upper-90s, and is a great example of someone who does not have "complete" extension.

UCLA RHP Trevor Bauer.

Inefficient extension -- such as short-arming the ball (a lack of extension) or "reaching through the target" (the wrong kind of extension) -- will likely result in lower velocities, but that doesn't mean that someone can't throw hard without efficient extension. On the other hand, overly aggressive extension can lead to cartilage irritation, joint swelling, and even olecranon fractures (Jay Powell, Joel Zumaya).

Proper understanding of concepts like this are essential for coaches that work with youth pitchers. Once improper techniques are assimilated, especially in kids with less natural athleticism, they can be extremely difficult to overcome.


A great series on the elbow

May 24, 2010 • Training

Eric Cressey, of Cressey Performance, published a series of posts on his personal blog over the past two weeks that takes a fairly comprehensive look at the elbow. His series progresses through anatomy, pathology, and injury before discussing how to go about protecting pitchers.

The first three parts are factual in nature, heavy on scientific facts but without beating you over the head with mumbo-jumbo.

Part 4 of Cressey's series builds on the information from the first three. He uses a 4-category approach to make general suggestions for keeping a pitcher healthy. The last three categories are spot-on, but I have a few issues with his ideas about injurious pitching mechanics.

To kick it off, Cressey shows a photo of a 5' 7" pitcher and a 6' 7" pitcher standing side-by-side and says, "Anyone who thinks these two are going to throw a baseball with velocity and safety via the same mechanics is out of his mind."

This is a very interesting statement to me, since Cressey seems to be suggesting that "safe" mechanics for a tall pitcher are different from "safe" mechanics for a short pitcher. I may be out of my mind, but that's just plain wrong.

Now, in real life, dealing with two different pitchers, yes, safe mechanics for one pitcher aren't necessarily safe for another pitcher, but height has as much to do with it as a pitcher's choice in footwear. The basics of functional anatomy do not vary with a person's height.

Things that will cause variations in "safe" mechanics are long-term training and congenital joint laxity. Long-term training is a very general term that I am using here to refer to how the body has adapted over time to throwing a baseball. This encompasses principles involving conformational changes in the skeleton (i.e. humeral retroversion), increased bone density, changes in muscle contractile force, and changes in tensile strength of ligaments. Congenital joint laxity can be thought of as natural flexibility, and it varies from person to person.

Cressey might as well have included a photo of any two pitchers standing side-by-side.

Kinetically speaking, shorter people have shorter levers, so an equal amount of force applied at a given joint results in less torque for a shorter person than for a taller person. This, however, is unavoidable.

The safest mechanics for an individual will be the same no matter how tall or short that person is. There is no height at which certain mechanics become safe and others become unsafe.

Cressey then discusses two biomechanical studies that correlate horizontal shoulder adduction and external rotation, respectively, to elbow valgus stress. Neither study supports his proposition, but the points are well taken, if somewhat incomplete.

My chief complaint about studies like these is that they focus mainly on peak torque values instead of the loading rates of those torques (i.e. How much time did the joint tissues have to adapt to the stress?). This is a topic for another day, though.

He follows this up with a discussion about balancing health-risk with performance as it pertains to deception and pitch movement. This is an excellent point, but it's one that I think far too many young pitchers fail to understand. This is also a topic for another day.

Cressey has two more posts in this series, and if you aren't already a reader of his, I highly suggest you become one. Click here to visit Eric Cressey's blog.


Dr. Mike Marshall Training: Javelins and Bucket Lids

May 18, 2009 • Training

I've been a bit busy lately with another project of mine, so I have been slacking a little when it comes to this blog. There isn't much substance to this post, but it's better than nothing.

This is another video that was filmed, edited, and produced by Dr. Marshall's students. It shows several of them performing some of Dr. Marshall's more unconventional training drills. In the video, they throw javelins and bucket lids.

The video quality isn't spectacular, and its producer added some background music (as well as a lengthy credits sequence at the end). I'd suggest muting the video, but then you wouldn't hear the commentary.

The pitchers perform the same exercises that they performed with the wrist weights and iron balls. The projectiles in this video are lighter, though not quite as light as a baseball.

These drills are more about neuromuscular fitness - joint action timing and sequencing or "muscle memory" - than they are about strength and durability. If I understand correctly, they are used to help learn and "perfect" Dr. Marshall's motion rather than to maintain it.

The bucket lid drill, designed to teach the appropriate axes of rotation for pitched balls, seems like it would also provide a decent "report card" for the release and spin of each pitch.